

Práctica 1: análisis factorial

ENUNCIADO 116 – PERSONALIDAD 16 TÉCNICAS MULTIVARIANTES 1

Manuela Ibáñez | Ángel Vega | octubre 2025

Contenido

Enu	ınciado de la práctica	2
1.	Preparación de los datos	3
	Carga de datos, examinar correlaciones / covarianzas, detectar variables problemátic lecidir qué variables entran al modelo y cuáles se dejan como suplementarias	-
	a.1) Variables que se incluyen en el modelo	4
	a.2) Análisis de la matriz de correlaciones o de covarianzas	4
	a.3) Determinar la estructura y si se elimina alguna de las variables se debe utilizar o suplementarias	
	a.4) Depuración y separación de suplementarias	8
2.	Análisis factorial inicial	9
	b) Llevar a cabo análisis factorial por el método de las componentes principales, leterminando y justificando la elección del número de factores elegido."	9
	b.1) Aplicar el método de las componentes principales	9
	b.2) Reestimación fijando $k = 5$ y reporte del modelo sin rotar	11
3. R	Rotación e interpretación de factores	13
	Rotación de la solución y determinación de las variables más relacionadas con cada factor	13
4. 0	Creación de nuevos conjuntos de datos	14
d	l) Puntuaciones factoriales (proyección de las observaciones)	14
e	e) Proyección de las variables sobre los ejes factoriales (coordenadas factoriales)	15
5. R	Representaciones gráficas	16
f) Representación gráfica	16
	f.1) Factores 1 y 2	17
	f.2) Factores 3 y 4	18
	f.3) Factores 1 y 5	19
6. E	Bondad del ajuste	20
g	y) Matriz de correlaciones residuales	20
7. V	Variables suplementarias	21
f	a) Proyectar las variables suplementarias generadas en el apartado a sobre los ejes actoriales. Representarlas junto al resto de variables en los planos generados en el apa	

Enunciado de la práctica

El conjunto de datos Personalidad16 contiene respuestas a cuestionario de personalidad de 20000 participantes. Se trabaja con 50 variables: Se pide Realizar análisis Factorial siguiendo la sistemática identificada en clase, determinando:

- a) Variables que se incluyen en el modelo, previo análisis de la matriz de correlaciones o de covarianzas (elegir). Determinar la estructura y si eliminas alguna de las variables debéis luego utilizarlas como suplementarias.
- b) Llevar a cabo análisis factorial por el método de las componentes principales, determinando y justificando la elección del número de factores elegido.
- c) Rotar la solución y determinar el conjunto de variables que se encuentran más relacionadas con cada factor. A partir de ahí, proponer un nombre para cada uno de los factores.
- d) Crear un conjunto de datos que contenga las proyecciones de todas las observaciones sobre los factores elegidos.
- e) Crear otro conjunto de datos que contenga las proyecciones de las variables sobre los ejes determinados por cada factor
- f) Si hemos retenido k factore y k es par, Representarlos gráficamente para las variables en los planos generados por los factores 1-2 3-4,..., (k-1)- k. Si es impar el ultimo cruzarlo con el 1º
- g) Examinar la matriz de correlaciones residuales, si veis que el modelo no es suficientemente bueno rectificarlo. Explicar por que la solución final es buena o no.
- h) Proyectar las variables suplementarias generadas en el apartado a sobre los ejes factoriales. Representarlas junto al resto de variables en los planos generados en el apartado f.

1. Preparación de los datos

En este ejercicio vamos a trabajar con una base de datos llamada personalidad16, que contiene un total de 51 variables y 20.000 observaciones . Los datos que contiene corresponden a un cuestionario de personalidad en el que cada punto refleja un comportamiento en una escala del 0 al 5.

Las variables son de tipo numérico y recogen y agrupan las respuestas. Algunas agrupaciones son:

- Rasgos de extroversión: alma_fiesta, hablo_muchas_personas, empiezo conversaciones, comodo con gente, nohablo, callado, poco que decir, etc.
- Rasgos de amabilidad y empatía: simpatizo_sentimientos, corazon_blando, emociono_con_otros, interes_personas, preocupo_por_demas, hago_gente_sienta_gusto, frente a ítems como insulto_gente, no_interes_demas, no interesan problemas otros.
- Responsabilidad y orden: atento_detalles, gusta_orden, sigo_horario, hago_tareas_rapido, estoy_preparado, en contraposición con dejo pertenencias porahi, desastre cosas, olvido donde dejocosas, eludo deberes.
- Estabilidad emocional/neuroticismo: estresofacil, cambio_estado_animo, cambio_humor, irrito_facil, me_enojo, me_perturban, siento_triste, preocupado, junto a ítems de carácter opuesto como no_triste o relajado.
- Apertura a la experiencia: imaginacion_vivida, tengo_grandes_ideas, uso_palabras_dificiles, vocabulario_rico, reflesiono_cosas, estoy_lleno_ideas, entiendo_rapido; frente a variables como dificultades_ideas_abstractas, no_interes_ideas_abstractas, no_soy_imaginativo.
- Finalmente, la variable N representa un índice global y es borrado por ello.

Todo esto son escalas que miden cuanta relación tiene los individuos con cada punto, permitiendo aplicar un análisis factorial para detectar dimensiones que estructuren la personalidad

- a) Carga de datos, examinar correlaciones / covarianzas, detectar variables problemáticas y decidir qué variables entran al modelo y cuáles se dejan como suplementarias.
- a.1) Variables que se incluyen en el modelo

```
/* DATASET */
proc contents data=mydata.personalidad16;
run;
```

AI	phabetic List of Variables and	Attrib	utes
#	Variable	Туре	Len
11	Estreso_facil	Num	8
51	N	Num	8
24	Simpatizo_sentimientos	Num	8
1	alma_fiesta	Num	8
33	atento_detalles	Num	8
10	callado	Num	8
17	cambio_estado_animo	Num	8
18	cambio_humor	Num	8
3	comodo_con_gente	Num	8
26	corazon_blando	Num	8
32	dejo_pertenencias_porahi	Num	8
34	desastre_cosas	Num	8
42	dificultades_ideas_abstractas	Num	8
38	eludo_deberes	Num	8
29	emociono_con_otros	Num	8
5	empiezo_conversaciones	Num	8
47	entiendo_rapido	Num	8
50	estoy_lleno_ideas	Num	8

50	estoy_lleno_ideas	Num	8
31	estoy_preparado	Num	8
40	exigente_trabajo	Num	8
37	gusta_orden	Num	8
7	hablo_muchas_personas	Num	8
30	hago_gente_sienta_gusto	Num	8
35	hago_tareas_rapido	Num	8
43	imaginacion_vivida	Num	8
23	insulto_gente	Num	8
22	interes_personas	Num	8
19	irrito_facil	Num	8
4	mantego_2_plano	Num	8
16	me_enojo	Num	8
15	me_perturban	Num	8
27	no_interes_demas	Num	8
44	no_interes_ideas_abstractas	Num	8
25	no_interesan_problemas_otros	Num	8
8	no_llamo_atencion	Num	8
9	no_soy_centro_atencion	Num	8
46	no_soy_imaginativo	Num	8
14	no triste	Num	8

Dado que la variable N se interpreta como un total, hemos decidido eliminarla de la base de ya que puede inducir colinealidad y sesgo.

```
□ data personalidad16_sinN;
    set mydata.personalidad16;
    drop N;
run;
```

a.2) Análisis de la matriz de correlaciones o de covarianzas

Analizando la matriz de correlaciones estamos buscando correlaciones altas entre variables (que podrían pertenecer a un factor común), problemas de multicolinealidad cuando las

correlaciones son muy elevadas o variables con correlaciones muy bajas que aportan poca información y que acabaremos tratando como suplementarias.

```
/*a.2) Matriz de correlaciones y covarianzas */

proc corr data=personalidad16_sinN cov plots=matrix(histogram);
    var _all_;
run;
```

Extracto de la matriz de covarianzas: la diagonal contiene las varianzas de cada variable y los valores fuera de la diagonal son covarianzas que miden cómo varían conjuntamente dos variables en sus unidades originales:

$$S = \frac{1}{n-1} (X - \bar{X})' (X - \bar{X})$$

	alma_fiesta	nohablo	comodo_con_gente	mantego_2_plano	empiezo_conversaciones	poco_que_decir	hablo_muchas_personas	no_llamo_atenc
alma_fiesta	1.596302855	-0.710279114	0.705338547	-0.706631732	0.750377159	-0.511611301	1.024313656	-0.554498
nohablo	-0.710279114	1.785288264	-0.657193060	0.851818591	-0.850586379	0.875762338	-0.826074654	0.638147
comodo_con_gente	0.705338547	-0.657193060	1.514167668	-0.619275764	0.862473854	-0.483248952	0.905863123	-0.420543
mantego_2_plano	-0.706631732	0.851818591	-0.619275764	1.528700435	-0.679636382	0.665428471	-0.751587979	0.728112
empiezo_conversaciones	0.750377159	-0.850586379	0.862473854	-0.679636382	1.685190437	-0.641983182	1.058459525	-0.461987
poco_que_decir	-0.511611301	0.875762338	-0.483248952	0.665428471	-0.641983182	1.586661231	-0.593420529	0.515285
hablo_muchas_personas	1.024313656	-0.826074654	0.905863123	-0.751587979	1.058459525	-0.593420529	1.975595557	-0.527215
no_llamo_atencion	-0.554498885	0.638147557	-0.420543397	0.728112006	-0.461987847	0.515285957	-0.527215433	1.677007
no_soy_centro_atencion	0.729055413	-0.579590380	0.644997970	-0.643205760	0.673734797	-0.442073634	0.765169068	-0.736827
callado	-0.632290895	0.775538977	-0.625265223	0.796894645	-0.730975779	0.616251103	-0.806961678	0.658491
Estreso_facil	-0.155205000	0.110758388	-0.308504355	0.255131157	-0.178032929	0.174980382	-0.218104858	0.201896
relajado	0.220327696	0.011728136	0.408907455	-0.068342217	0.236327884	0.009047900	0.269170251	-0.012783
preocupado	-0.139530617	0.100221361	-0.169889724	0.273156058	-0.072113158	0.123184867	-0.142503353	0.206882
no_triste	0.181567278	-0.059434722	0.277250013	-0.108067403	0.203885457	-0.023577216	0.228945085	-0.049113
me_perturban	-0.075422291	0.075674334	-0.208754828	0.193102855	-0.093925579	0.190726834	-0.117812548	0.114302
me_enojo	-0.107702585	0.050588029	-0.264541127	0.216462823	-0.126169633	0.178485399	-0.159144032	0.126480
cambio_estado_animo	-0.030691255	0.033442722	-0.242677424	0.199245162	-0.099741945	0.149114478	-0.076941830	0.084514
cambio_humor	-0.037029331	0.040383969	-0.290704645	0.203376969	-0.130606023	0.164059530	-0.106945315	0.070237

Extracto de la matriz de correlaciones: las correlaciones son coeficientes de Pearson estandarizados, la diagonal vale siempre 1(correlación perfecta consigo misma), los valores negativos indican relación inversa, los positivos relación directa, el p-valor (<.0001 en casi todos los casos) indica si la correlación es estadísticamente significativa.

$$R = D^{-\frac{1}{2}}SD^{-\frac{1}{2}}$$

SAS obtiene las correlaciones individuales con el coeficiente de correlación de Pearson:

$$r_{ij} = \frac{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i) (x_{kj} - \bar{x}_j)}{\sqrt{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)^2 \sum_{k=1}^{n} (x_{kj} - \bar{x}_j)}}$$

	alma_fiesta	nohablo	comodo_con_gente	mantego_2_plano	empiezo_conversaciones	poco_que_decir	hablo_muchas_personas	no_llamo_atencion
alma_fiesta	1.00000	-0.42074 <.0001	0.45368 <.0001	-0.45235 <.0001	0.45751 <.0001	-0.32147 <.0001	0.57680 <.0001	-0.33890 <.0001
nohablo	-0.42074 <.0001	1.00000	-0.39972 <.0001	0.51562 <.0001	-0.49039 <.0001	0.52034 <.0001	-0.43986 <.0001	0.36881 <.0001
comodo_con_gente	0.45368 <.0001	-0.39972 <.0001	1.00000	-0.40704 <.0001	0.53993 <.0001	-0.31178 <.0001	0.52375 <.0001	-0.26391 <.0001
mantego_2_plano	-0.45235 <.0001	0.51562 <.0001	-0.40704 <.0001	1.00000	-0.42344 <.0001	0.42727 <.0001	-0.43248 <.0001	0.45475 <.0001
empiezo_conversaciones	0.45751 <.0001	-0.49039 <.0001	0.53993 <.0001	-0.42344 <.0001	1.00000	-0.39261 <.0001	0.58010 <.0001	-0.27481 <.0001
poco_que_decir	-0.32147 <.0001	0.52034 <.0001	-0.31178 <.0001	0.42727 <.0001	-0.39261 <.0001	1.00000	-0.33517 <.0001	0.31589 <.0001
hablo_muchas_personas	0.57680 <.0001	-0.43986 <.0001	0.52375 <.0001	-0.43248 <.0001	0.58010 <.0001	-0.33517 <.0001	1.00000	-0.28965 <.0001
no_llamo_atencion	-0.33890 <.0001	0.36881 <.0001	-0.26391 <.0001	0.45475 <.0001	-0.27481 <.0001	0.31589 <.0001	-0.28965 <.0001	1.00000
no_soy_centro_atencion	0.42392 <.0001	-0.31868 <.0001	0.38508 <.0001	-0.38219 <.0001	0.38128 <.0001	-0.25783 <.0001	0.39994 <.0001	-0.41801 <.0001
callado	-0.37982 <.0001	0.44052 <.0001	-0.38565 <.0001	0.48917 <.0001	-0.42736 <.0001	0.37131 <.0001	-0.43573 <.0001	0.38592 <.0001
Estreso_facil	-0.09084 <.0001	0.06130 <.0001	-0.18540 <.0001	0.15259 <.0001	-0.10142 <.0001	0.10273 <.0001	-0.11475 <.0001	0.11529 <.0001
relajado	0.14041 <.0001	0.00707 0.3176	0.26755 <.0001	-0.04450 <.0001	0.14658 <.0001	0.00578 0.4134	0.15419 <.0001	-0.00795 0.2610
preocupado	-0.09678	0.06573	-0.12099	0.19360	-0.04868	0.08570	-0.08885	0.14000

Extracto de estadísticos descriptivos: número de observaciones disponibles (20.000 en todas), la media, la desviación típica, la suma total de valores y los mínimos y máximos observados, que en este caso oscilan entre 0 y 5 al tratarse de una escala tipo Likert.

	S	imple Sta	tistics			
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
alma_fiesta	20000	2.62640	1.26345	52528	0	5.00000
nohablo	20000	2.79900	1.33615	55980	0	5.00000
comodo_con_gente	20000	3.22980	1.23052	64596	0	5.00000
mantego_2_plano	20000	3.17600	1.23641	63520	0	5.00000
empiezo_conversaciones	20000	3.22615	1.29815	64523	0	5.00000
poco_que_decir	20000	2.45855	1.25963	49171	0	5.00000
hablo_muchas_personas	20000	2.73665	1.40556	54733	0	5.00000
no_llamo_atencion	20000	3.38565	1.29499	67713	0	5.00000
no_soy_centro_atencion	20000	2.96860	1.36118	59372	0	5.00000
callado	20000	3.56020	1.31760	71204	0	5.00000
E streso_facil	20000	3.33285	1.35228	66657	0	5.00000
relajado	20000	3.11755	1.24202	62351	0	5.00000
preocupado	20000	3.89635	1.14113	77927	0	5.00000
no_triste	20000	2.66825	1.24558	53365	0	5.00000
me_perturban	20000	2.91055	1.27911	58211	0	5.00000
me_enojo	20000	2.93550	1.33945	58710	0	5.00000
cambio_estado_animo	20000	3.13105	1.30206	62621	0	5.00000
cambio_humor	20000	2.79195	1.35024	55839	0	5.00000
irrito_facil	20000	3.13490	1.31293	62698	0	5.00000

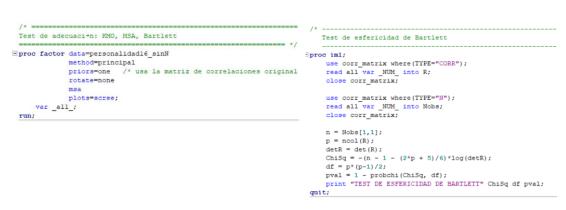
Por ejemplo, *alma_fiesta* correlaciona fuertemente con *hablo_muchas_personas* ($r\approx0.65$), lo que sugiere que ambas variables miden un mismo rasgo de extroversión. En cambio, *estresofacil* presenta correlación negativa con *relajado* ($r\approx-0.52$), coherente con que representan polos opuestos de estabilidad emocional.

a.3) Determinar la estructura y si se elimina alguna de las variables se debe utilizar como suplementarias

Vamos a utilizar la **matriz de correlaciones** en lugar de la de covarianzas, ya que, entre otras cosas, las variables del ejercicio presentan varianzas distintas. De este modo se identifica de manera más fiable qué variables están asociadas entre sí y, por tanto, son adecuadas para extraer factores comunes en el análisis factorial.

Código y fórmulas empleadas para hacer el análisis discriminatorio: test de adecuación KMO, MSA, Bartlett.

Índice KMO de Kaiser-Meyer-Olkin:


$$KMO = \frac{\sum_{i \neq j} r_{ij}^{2}}{\sum_{i \neq j} r_{ij}^{2} + \sum_{i \neq j} p_{ij}^{2}}$$

Medida de adecuación individual (MSA)

$$MSA = \frac{\sum_{i \neq j} r_{ij}^{2}}{\sum_{i \neq j} r_{ij}^{2} + \sum_{i \neq j} p_{ij}^{2}}$$

Test de esfericidad de Bartlett

$$x^2 = -\left[n - 1 - \frac{2p + 5}{6}\right] \ln|R|$$

El código imprime los índices de adecuación (**KMO y MSA**) y el Test de Esfericidad de Bartlett.

El KMO global y el MSA por variable evalúan si se puede realizar un análisis factorial y qué variables son aceptables o no; el scree plot muestra graficas que te ayudan en la decisión de cuantos factores elegir para el estudio. Por último, el test de Bartlett actúa de forma que se evalúa una hipótesis nula: matriz de correlaciones esférica, donde no hay estructura común y no se podría hacer el análisis factorial, y una matriz no esférica con correlaciones, tras el test se habremos si aceptar o rechazar la H0 según un p-valor (normalmente, p=0.05). Este ha sido nuestro caso y por lo tanto continuamos.

a.4) Depuración y separación de suplementarias


Hemos empleado un análisis exploratorio con rotación para detectar ítems débiles.

Variables que se han detectado como débil (y su respectiva justificación):

no_triste:

hago_gente_sienta_gusto

Para seleccionar las variables suplementarias, no nos hemos guiado por un 0.5 de relación, ya que hay variables con valores muy próximos que de ser eliminados podrían suponer un deterioro del proyecto. Dicho esto, solo hemos seleccionado 2 variables: no_triste y hago_gente_sienta_gusto porque no tienen ningún valor significante.

```
/* Separar base principal (sin las suplementarias) */

□data principal;

set personalidadl6_sinN;

drop no_triste hago_gente_sienta_gusto relajado

preocupo_por_demas no_soy_imaginativo reflexiono_cosas;

run;

/* Crear base de variables suplementarias */

□data suplementarias;

set personalidadl6_sinN;

keep no_triste hago_gente_sienta_gusto relajado

preocupo_por_demas no_soy_imaginativo reflexiono_cosas;

run;
```

2. Análisis factorial inicial

El objetivo consiste en aplicar el método de Componentes Principales, calcular autovalores y varianza explicada, y justificar el número de factores retenidos con criterios estándar (Kaiser, proporción acumulada y scree plot).

- b) Llevar a cabo análisis factorial por el método de las componentes principales, determinando y justificando la elección del número de factores elegido.".
- b.1) Aplicar el método de las componentes principales

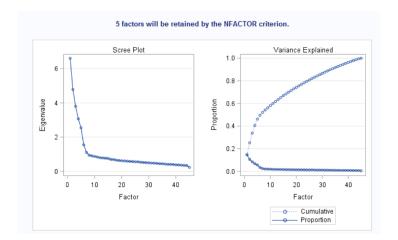
En esta etapa no se aplica rotación, puesto que el objetivo es exclusivamente determinar k.

Matriz de partida y estandarización:

$$S = \frac{1}{n-1}(X - \bar{X})^\top (X - \bar{X}), \qquad R = \frac{1}{n-1}Z^\top Z, \ \ Z = \text{estandarización de } X.$$

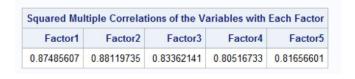
Formulación de máxima varianza:

$$z = Xu, \qquad ext{Var}(z) = rac{1}{n-1} \, u^ op X^ op Xu, \qquad \max_{\|u\|=1} u^ op X^ op Xu,
onumber \ R = rac{1}{n-1} X^ op X, \quad Ru = \lambda u.$$


Descomposición espectral y propiedades:

$$R = P \Lambda P^ op, \qquad \Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_p), \qquad P^ op P = I, \qquad \mathrm{tr}(R) = p.$$

Varianza explicada y regla de Kaiser:


$$\operatorname{prop}(j) = rac{\lambda_j}{p}, \qquad \operatorname{acum}(m) = rac{\sum_{j=1}^m \lambda_j}{p}, \qquad \lambda_j > 1.$$

	Factor1	Factor2	or Pattern Factor3	Factor4	Factor5	Factor6	Factor
2.2							
mantego_2_plano	0.74094	0.12097	0.00424	-0.03577	0.11406	0.03389	0.1262
nohablo	0.72820	-0.02960		0.01194	0.07974	-0.02125	0.1296
callado	0.67637	0.16265	0.00793	-0.02291	0.10179	0.04449	0.1150
no_llamo_atencion	0.61683	0.03616	0.09357	0.06751	0.04754	0.05976	0.1834
poco_que_decir	0.59332	0.06042	-0.11167	-0.02726	0.00538	-0.15870	0.3285
no_soy_centro_atencion	-0.60865	-0.00374	-0.00888	-0.02037	0.22501	0.07113	0.1378
comodo_con_gente	-0.61306	-0.22334	0.30841	0.10886	0.10103	0.02841	0.2133
empiezo_conversaciones	-0.68286	-0.05540	0.22692	0.11094	0.16338	0.07481	0.1185
alma_fiesta	-0.69787	-0.03990	0.06804	-0.00546	0.17314	-0.02765	0.1633
hablo_muchas_personas	-0.70315	-0.07497	0.17525	0.03605	0.15612	0.02398	0.1682
cambio_humor	0.00296	0.77590	-0.04690	-0.15347	0.06213	-0.01433	0.0149
me_enojo	0.04375	0.76424	0.04698	-0.04658	-0.03534	-0.01385	0.0541
cambio_estado_animo	-0.00286	0.75916	-0.03272	-0.13663	0.08788	-0.02899	0.0364
irrito_facil	0.03588	0.75147	-0.14912	-0.00877	-0.01145	0.06098	0.0880
Estreso_facil	0.11889	0.71005	0.11237	0.01157	-0.08115	0.00845	-0.0058
preocupado	0.16352	0.61384	0.25685	0.06590	0.06298	0.03595	0.0182
siento_triste	0.25761	0.60779	0.00558	-0.17681	0.06749	0.10195	-0.0735
me_perturban	0.04588	0.59698	0.02614	-0.04628	0.01418	-0.07592	0.1073
Simpatizo_sentimientos	-0.02550	0.06738	0.79408	0.06163	0.09413	0.00882	0.0170
emociono_con_otros	-0.06602	0.11226	0.72313	0.07817	0.16170	0.00687	0.0129
corazon_blando	0.04658	0.16192	0.64865	0.02482	0.11565	-0.09534	0.0949
tomo_tiempo_demas	-0.09173	-0.00750	0.63011	0.10298	0.13215	0.05972	0.1345
interes_personas	-0.31084	-0.04263	0.59736	0.00215	0.07195	0.12982	0.0271
insulto_gente	-0.12820	0.29191	-0.40477	-0.20226	0.07092	0.20055	0.2077
no_interes_demas	0.32323	0.11962	-0.61996	-0.00536	0.14969	0.01292	0.2584
no_interesan_problemas_otros	0.15964	0.02729	-0.65355	-0.00261	0.19191	0.00520	0.3047
sigo_horario	-0.03619	0.03048	0.14280	0.65675	0.04215	0.05422	0.1779
hago_tareas_rapido	-0.06928	-0.07134	0.07106	0.64282	0.09996	-0.08403	0.1183
estoy_preparado	-0.02559	-0.08177	0.04747	0.63169	0.11198	0.15773	0.1026
gusta_orden	0.05666	0.11714	0.07497	0.60592	0.07538	0.14080	0.1450
exigente_trabajo	-0.02155	0.01373	0.10926	0.45325	0.29783	0.24123	0.1111
atento_detalles	0.05251	0.04686	0.12150	0.41867	0.36064	0.16204	0.0441
eludo_deberes	0.05934	0.24744	-0.10151	-0.50695	0.13726	0.01723	0.2227
desastre_cosas	0.06880	0.38568	0.01729	-0.58669	0.07908	0.08853	0.1730
dejo_pertenencias_porahi	-0.02546	0.09516	0.12312	-0.61197	0.11673	0.22768	0.2035
olvido_donde_dejocosas	0.01694	0.18049	0.06327	-0.65943	0.13770	0.11324	0.2277
estoy_lleno_ideas	-0.16160	0.00485	0.05872	0.01395	0.76081	0.14574	-0.1468
tengo_grandes_ideas	-0.19453	-0.04884	-0.00021	0.13204	0.68249	0.18166	-0.0329
imaginacion_vivida	-0.00120	0.13840	0.10092	-0.09270	0.66862	0.01794	-0.1660
reflesiono_cosas	0.16137	0.17931	0.25887	0.06351	0.38879	0.21260	-0.1202
vocabulario_rico	-0.03304	-0.01250	0.01289	0.04086	0.16629	0.80041	-0.1380
uso palabras dificiles	-0.02660	0.09361	-0.05785	-0.04138	0.16135	0.79596	-0.1132
entiendo rapido	-0.05046	-0.11817	0.05580	0.16826	0.39907	0.46815	0.0232
no interes ideas abstractas	0.01668	0.08861	-0.06188	0.09782	-0.27360	-0.08526	0.6879
dificultades_ideas_abstractas	0.04014	0.19201	0.01689	0.01374	-0.27615	-0.23848	0.6154

Elegimos 5 factores porque, aunque haya 7 que tienen un autovalor mayor que 1 (Kaiser) son los que mayor representación tienen, ya que al observar las cargas del sexto y séptimo factor representan a unas pocas variables. Añadir los factores 6–7 aporta **muy poca varianza** y tampoco mejora el ajuste (residuales/RMSR) además de complicar la estructura con cargas cruzadas. Con 5 obtenemos una solución más **sencilla e interpretable** además coherente con el llamado **Big Five** de la personalidad/emociones que son los rasgos con los que posteriormente nombraremos a los factores.

Además, en los próximos apartados se puede apreciar como la puntación de cada factor utilizando k=5 es muy alta (entre 0.8 y 0.9) mientras que si usamos k=7, los factores 5, 6 y 7 tienen mala puntuación (menor que 0.7).

actor	con cada fac	as variables	adradas de la	núltiples cua	rrelaciones i	Co
6 Factor	Factor6	Factor5	Factor4	Factor3	Factor2	Factor1
0.67323599	0.68154019	0.68681449	0.80665875	0.83921423	0.88081587	0.87401947

b.2) Reestimación fijando k = 5 y reporte del modelo sin rotar

Volvemos a justar el análisis pero esta vez reteniendo el número de factores que hemos decidido:

Cargas de ACP y comunalidades:

$$L = P_5 \, \Lambda_5^{1/2}, \qquad h_i^2 = \sum_{j=1}^5 l_{ij}^{\, 2}, \qquad \psi_i = 1 - h_i^2.$$

Puntuaciones factoriales:

$$T = X P_5$$
.

Final Co	Final Communality Estimates: Total = 20.798720						
n_blando	no_interes_demas	tomo_tiempo_demas					
.45891391	0.54310565	0.41697356					

El porcentaje de varianza común explicada por el modelo es

$$rac{\sum_{j=1}^5 \lambda_j}{p} \; = \; rac{20.7987}{p},$$

	Eigenvalue	Difference	Proportion	Cumulative
1	6.60650120	1.82351186	0.1468	0.1468
2	4.78298934	0.98415218	0.1063	0.2531
3	3.79883716	0.73261756	0.0844	0.3375
4	3.06621960	0.52204661	0.0681	0.4057
5	2.54417299	0.99731173	0.0565	0.4622
6	1.54686126	0.44022636	0.0344	0.4966
7	1.10663490	0.16540198	0.0246	0.5212
8	0.94123292	0.03835024	0.0209	0.5421
9	0.90288268	0.03172929	0.0201	0.5621
10	0.87115339	0.03096328	0.0194	0.5815
11	0.84019010	0.04356035	0.0187	0.6002
12	0.79662975	0.01235801	0.0177	0.6179
13	0.78427174	0.01335069	0.0174	0.6353
14	0.77092105	0.01414120	0.0171	0.6524
15	0.75677985	0.05875171	0.0168	0.6693

Factor	Autovalor	Diference	%	% Acum.	Marcas
1	6.607	1.824	14.7%	14.7%	[Kaiser][Codo]
2	4.783	0.984	10.6%	25.3%	[Kaiser][Codo]
3	3.799	0.733	8.4%	33.8%	[Kaiser][Codo]
4	3.066	0.522	6.8%	40.6%	[Kaiser][Codo]
5	2.544	0.997	5.7%	46.2%	[Kaiser][Codo]
6	1.547	0.440	3.4%	49.7%	[Kaiser]
7	1.107	0.165	2.5%	52.1%	[Kaiser]
8	0.941	0.038	2.1%	54.2%	
9	0.903	0.032	2.0%	56.2%	
10	0.871	0.031	1.9%	58.1%	
11	0.840	0.044	1.9%	60.0%	
12	0.797	0.012	1.8%	61.8%	
13	0.784	0.013	1.7%	63.5%	
14	0.771	0.014	1.7%	65.2%	
15	0.757	0.059	1.7%	66.9%	

3. Rotación e interpretación de factores

c) Rotación de la solución y determinación de las variables más relacionadas con cada factor

Aplicamos una **rotación ortogonal VARIMAX** a la solución con k=5 factores con el fin de hacer más simple la estructura de cargas. Tras la rotación, para cada factor, se identifican las **cargas** y en base a esas agrupaciones hemos propuesto nombres para cada factor.

Rotación ortogonal:

$$L^* = L\,T, \qquad T^ op T = I, \qquad h_i^2 = \sum_{j=1}^k (l_{ij}^*)^2 = \sum_{j=1}^k l_{ij}^2, \qquad \Phi = I_k.$$

Criterio VARIMAX (forma clásica, maximizando el contraste de las cargas al cuadrado):

$$\max_{T} \sum_{j=1}^{k} \left[\frac{1}{p} \sum_{i=1}^{p} (l_{ij}^{*})^{4} - \left(\frac{1}{p} \sum_{i=1}^{p} (l_{ij}^{*})^{2} \right)^{2} \right].$$

(Con rotación oblicua, por comparación: $L^* = LT$, pero $\Phi = T^TT \neq Iy$ la matriz de estructura sería $S = L^*\Phi$.)

	The special control of the second sec											
	Orth	nogonal T	ransforma	tion Matri	x							
	1	2	3	4	5							
1	-0.68864	0.50455	-0.35664	-0.32197	-0.20086							
2	0.21654	0.74005	0.46207	-0.08354	0.43005							
3	-0.58135	-0.05190	0.24332	0.72896	0.26221							
4	0.01184	-0.12845	-0.56842	-0.10003	0.80638							
5	0.37521	0.42256	-0.52630	0.58989	-0.23601							

(La tabla rotada con los factores subrayados está en el apartado b.1)

Tal y como he mencionado anteriormente, la estructura obtenida se alinea con el modelo Big Five de personalidad el que se distinguen 5 grandes rasgos de la personalidad: extraversión, amabilidad, responsabilidad (conciencia), estabilidad emocional y apertura a la experiencia.

Por lo tanto, nuestros factores quedan:

FACTOR 1: Extraversión

FACTOR 2: Estabilidad emocional

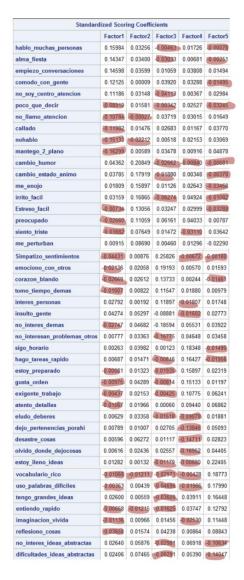
FACTOR 3: Amabilidad

FACTOR 4: Responsabilidad

FACTOR 5: Intelecto

4. Creación de nuevos conjuntos de datos

d) Puntuaciones factoriales (proyección de las observaciones)


Se obtienen las **puntuaciones factoriales** de cada observación sobre los 5 factores rotados (VARIMAX). Estas puntuaciones son combinaciones lineales de las variables ya estandarizadas y permiten **posicionar** cada una de las observaciones.

Esta tabla indica **qué tan bien puede predecirse o definirse** cada factor a partir del conjunto de datos, los valores altos implican factores bien determinados (entre 0.8-0.9).

Each Factor	Squared Multiple Correlations of the Variables with Each Fac					
Factor5	Factor4	Factor3	Factor2	Factor1		
0.81656601	0.80516733	0.83362141	0.88119735	0.87485607		

La matriz de **pesos** para calcular las **puntuaciones factoriales por regresión**. Cada celda es el peso de una variable (estandarizada) en un factor. Para un sujeto *i* y el factor *k*:

$$\mathrm{Score}_{ik} = \sum_j w_{jk} \, z_{ij}$$

Los signos indican si la variable suma o resta al factor (son correlaciones variables–factor).

e) Proyección de las variables sobre los ejes factoriales (coordenadas factoriales)

Hemos obtenido las **coordenadas factoriales de las variables** (cargas rotadas sobre los factores) para representar la estructura en los **planos factoriales**. Lo interpretamos como la **correlación** entre la variable *i* y el factor *j*.

Coordenadas factoriales (variables):

$$\operatorname{Coord}(x_i \text{ en } F_j) = l_{ij}^*.$$

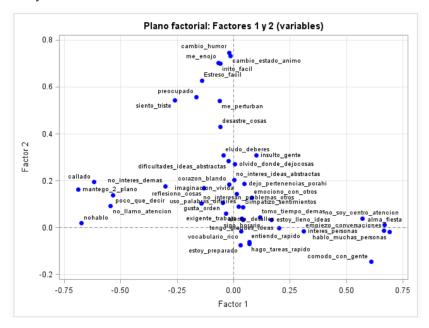
Comunalidad (calidad de representación de x_i):

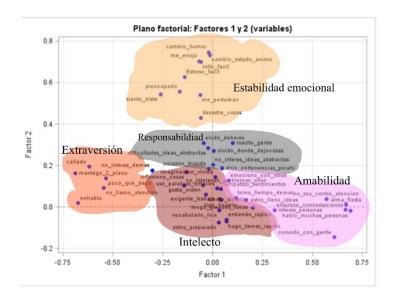
$$h_i^2 = \sum_{j=1}^k ig(l_{ij}^*ig)^2.$$

Rotated Factor Pattern						
	Factor1	Factor2	Factor3	Factor4	Factor5	
hablo_muchas_personas	0.69033	-0.01777	0.15045	0.07521	0.09143	
alma_fiesta	0.66992	0.00990	0.05816	0.03190	0.07237	
empiezo_conversaciones	0.66660	-0.01459	0.20084	0.13811	0.13799	
comodo_con_gente	0.60968	-0.14651	0.26635	0.15262	0.04999	
no_soy_centro_atencion	0.57048	0.03858	-0.01034	0.01532	0.16509	
poco_que_decir	-0.53309	0.13935	-0.12597	0.02800	-0.16028	
no_llamo_atencion	-0.54576	0.09164	0.05412	0.10062	0.02607	
callado	-0.61953	0.19409	-0.01041	0.00812	0.06776	
nohablo	-0.67457	0.01915	-0.11582	0.04259	0.01221	
mantego_2_plano	-0.68858	0.16258	-0.01288	0.00097	0.07147	
cambio_humor	-0.02024	0.74649	-0.03543	-0.15020	0.02410	
cambio_estado_animo	-0.01287	0.73267	-0.02200	-0.12788	0.02959	
me_enojo	-0.06562	0.70375	0.05221	-0.05010	-0.04923	
irrito_facil	-0.05979	0.69886	-0.13655	-0.01159	-0.00289	
Estreso_facil	-0.13888	0.62740	0.11391	-0.00833	-0.05154	
preocupado	-0.16607	0.55594	0.23987	0.06093	0.06298	

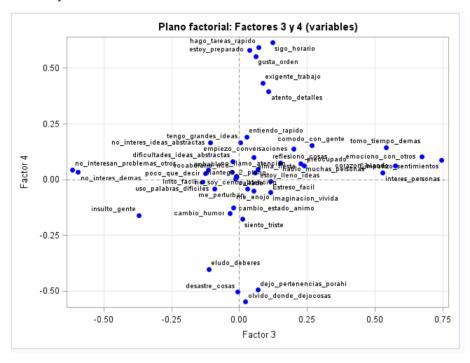
Final Communality Estimates: Total = 17.838568

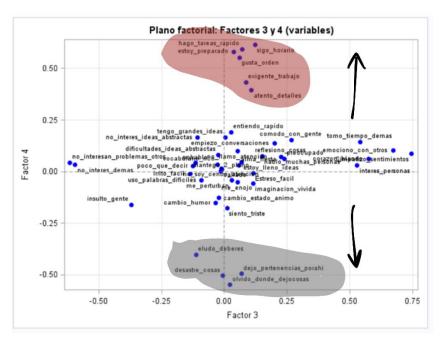
5. Representaciones gráficas

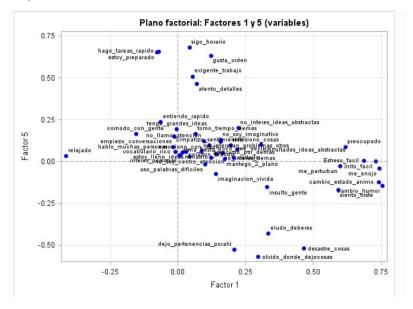

f) Representación gráfica

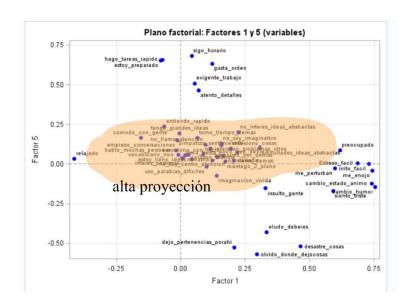

Visualización de la estructura factorial retenida con cinco factores.

Círculo unidad:


Las variables que están cercanas al círculo unidad están bien representadas en ese plano, tienen una alta proyección, mientras que las cercanas al origen aportan poca información (en ese plano). Como se puede apreciar en los gráficos, los agrupamientos de variables sugieren dimensiones comunes mientras que las opuestas sugieren relaciones negativas.


f.1) Factores 1 y 2


f.2) Factores 3 y 4

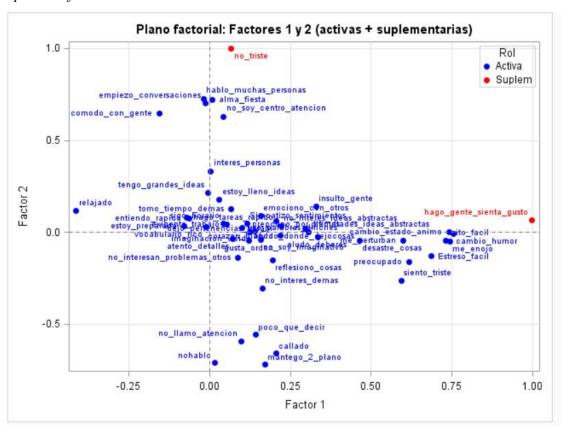


(se aprecian las direcciones opuestas)

f.3) Factores 1 y 5

6. Bondad del ajuste

g) Matriz de correlaciones residuales


Residual Correlations With Uniqueness on the Diagonal							
Simpatizo_sentimientos	no_interesan_problemas_otros	corazon_blando	no_interes_demas	tomo_tiempo_demas	emociono_con_otros	estoy_preparado	
0.02161	0.03531	0.03093	0.04136	0.01411	0.01919	-0.00948	
0.00832	0.02015	0.00931	-0.00277	0.02596	0.01966	0.00047	
-0.00114	0.07166	0.00015	0.05515	0.01965	-0.03142	0.00032	
0.00027	0.03201	-0.01410	-0.00415	0.01344	-0.01145	0.00328	
-0.00478	0.03969	-0.00645	0.06428	0.00501	-0.01923	-0.02460	
0.02204	0.05188	0.03881	0.03481	0.05167	0.03486	0.00158	
0.00286	0.05999	0.00057	0.04260	0.02130	-0.00343	-0.01572	
-0.01650	0.04823	-0.03406	0.02107	0.04561	-0.02949	-0.02831	
0.02633	0.02514	0.04216	0.03153	0.01845	0.05415	-0.01134	
0.00068	0.01719	-0.00948	-0.00102	0.02144	-0.00677	0.00103	
-0.03314	-0.02495	-0.05249	-0.03453	-0.05778	-0.05547	0.01269	
-0.04813	0.00072	-0.05619	-0.00832	-0.05364	-0.07105	-0.01321	
-0.00817	-0.01219	-0.00677	-0.00870	-0.01941	-0.00908	-0.01463	
-0.01802	-0.03193	-0.00250	-0.03673	-0.03596	-0.01493	0.00354	
-0 00910	-0 04464	-0 02780	-0 03716	-0 00669	-0 00669	0 00600	

Root Mean Square Off-Diagonal Residuals: Overall = 0.0429						
	corazon_blando	no_interes_demas	tomo_tiempo_demas	emocio		

La matriz de correlaciones residuales sin contar la diagonal tiene una media de 0.04290449 lo cual es muy bajo y denota un ajuste excelente.

7. Variables suplementarias

h) Proyectar las variables suplementarias generadas en el apartado a sobre los ejes factoriales. Representarlas junto al resto de variables en los planos generados en el apartado f.

Tal y como era de esperar, las variables suplementarias están extremadamente lejos del origen.